5.1) For the following parent (that is, initial) nuclides, deduce the daughter (final) nuclides for both β^- and β^+ decays. Compare the ground state J^π for both parent and daughters (from the NNDC database or from Appendix C in Krane) and compute all the possible multipolarities of the ground-state to ground-state transitions. Classify all decay modes (some won’t occur because of Q-values but never mind; for this problem do not compute the Q-value) as Fermi, Gamow-Teller (or both) or forbidden.

(a) ^{137}Cs ($Z=55$)
(b) ^{60}Co ($Z=27$)
(c) ^{18}F ($Z=9$)
(d) ^{25}Na ($Z=11$)
(e) ^{76}As ($Z=33$)

5.2) Isotope Y can β^--decay to isotope Z or β^+-decay to isotope X. Both have exactly the same ft values, but the Q-values for the β^- decay is 3.3 MeV while that of the β^+ decay is 1.8 MeV. If the β^- decay-rate is 56 s$^{-1}$, use Sargent’s rule to compute the β^+ decay rate. Compute the branching ratios for both the β^- and β^+ decays.

5.3) Repeat problem (2) but change the assumptions: the Q-values are the same (say 3.3 MeV) but the β^- decay has a log ft value of 5.7 while the β^+ decay has 6.5.

5.4) For the following parent nuclides, estimate the branching ratios of β^+, electron capture, and β^- decay. You will need to compute the Q-values of all 3 decays. Assume the log ft values are the same. If a decay cannot occur due the Q-value having the wrong sign, state that fact. (For this problem do not consider if the transition is "allowed" or "forbidden." Note that "forbidden" does not actually mean a decay cannot occur, only that it has a slower rate--a longer half-life--than an "allowed" transition.)

(a) ^{104}Rh
(b) ^{108}Ag
(c) ^{63}Cu

5.5) Consider the mirror decays $^{14}\text{C} \rightarrow ^{14}\text{N}$ and $^{14}\text{O} \rightarrow ^{14}\text{N}$. From experimental data (see e.g. NNDC website), (a) compute the relevant Q-values (b) and comparing actual half-lives and using Sargent's rule, extract the difference in log ft values between the two decays.